首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19621篇
  免费   3059篇
  国内免费   2832篇
化学   15302篇
晶体学   360篇
力学   876篇
综合类   205篇
数学   2447篇
物理学   6322篇
  2024年   17篇
  2023年   311篇
  2022年   450篇
  2021年   586篇
  2020年   719篇
  2019年   769篇
  2018年   612篇
  2017年   664篇
  2016年   958篇
  2015年   1000篇
  2014年   1281篇
  2013年   1525篇
  2012年   1823篇
  2011年   1905篇
  2010年   1378篇
  2009年   1292篇
  2008年   1507篇
  2007年   1217篇
  2006年   1191篇
  2005年   1012篇
  2004年   845篇
  2003年   672篇
  2002年   734篇
  2001年   522篇
  2000年   355篇
  1999年   363篇
  1998年   263篇
  1997年   179篇
  1996年   201篇
  1995年   185篇
  1994年   152篇
  1993年   120篇
  1992年   104篇
  1991年   120篇
  1990年   99篇
  1989年   83篇
  1988年   44篇
  1987年   46篇
  1986年   42篇
  1985年   36篇
  1984年   26篇
  1983年   23篇
  1982年   13篇
  1981年   16篇
  1980年   7篇
  1979年   7篇
  1978年   7篇
  1977年   6篇
  1976年   7篇
  1975年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Electroorganic synthesis is an emerging area of high impact research in organic chemistry, which is considered as one of the green and efficient methods and attracts growing research attention. In this review, we summarized comprehensively the recent literature reports on the electrochemical oxidative difunctionalization of unsaturated C—C bonds. The reaction types described in this review included electrochemical intermolecular cyclization, electrochemical intramolecular cyclization, and electrochemical difunctionalization of alkenes/alkynes. This review focuses on the discussion of its synthetic generality for the preparation of functionalized compounds and the related electrochemical oxidative reaction mechanism.  相似文献   
102.
Planar luminogens have encountered difficulties in overcoming intrinsic aggregation-caused emission quenching by intermolecular π-π stacking interactions. Although excited-state double-bond reorganization (ESDBR) can guide us on designing planar aggregation-induced emission (AIE) luminogens (AIEgens), its mechanism has yet been elucidated. Major challenges in the field include methods to efficiently restrict ESDBR and enhance AIE performance without using bulky substituents (e.g., tetraphenylethylene and triphenylamine). In this study, we rationally developed fluoro-substituent AIEgens with stronger intermolecular H-bonding interaction for restricted molecular motions and increased crystal density, leading to decreased nonradiative decay rate by one order of magnitude. The adjusted ESDBR properties also show a corresponding response to variation in viscosity. Furthermore, their aggregation-induced reactive oxygen species (ROS) generations have been discovered. The application of such planar AIEgen in treating multidrug-resistant bacteria has been demonstrated in a mouse model. The relationship between ROS generation and distinct E/Z-configurational stacking behaviors have been further understood, providing a design principle for synthesizing planar AIEgen-based photosensitizers.  相似文献   
103.
The success of intracellular protein therapy demands efficient delivery and selective protein activity in diseased cells. Therefore, a cascaded nanozymogen consisting of a hypoxia-activatable pro-protein, a hypoxia-inducing protein, and a hypoxia-strengthened intracellular protein delivery nanovehicle was developed. RPAB, an enzymatically inactive pro-protein of RNase, reversibly caged with hypoxia-cleavable azobenzene, was delivered with glucose oxidase (GOx) using hypoxia-responsive nanocomplexes (NCs) consisting of azobenzene-cross-linked oligoethylenimine (AOEI) and hyaluronic acid (HA). Upon NC-mediated delivery into cancer cells, GOx catalyzed glucose decomposition and aggravated tumoral hypoxia, which drove the recovery of RPAB back to the hydrolytically active RNase and expedited the degradation of AOEI to release more protein cargoes. Thus, the catalytic reaction of the nanozymogen was self-accelerated and self-cycled, ultimately leading to a cooperative anti-cancer effect between GOx-mediated starvation therapy and RNase-mediated pro-apoptotic therapy.  相似文献   
104.
Ambient ionization based on liquid extraction is widely used in mass spectrometry imaging (MSI) of molecules in biological samples. The development of nanospray desorption electrospray ionization (nano-DESI) has enabled the robust imaging of tissue sections with high spatial resolution. However, the fabrication of the nano-DESI probe is challenging, which limits its dissemination to the broader scientific community. Herein, we describe the design and performance of an integrated microfluidic probe (iMFP) for nano-DESI MSI. The glass iMFP, fabricated using photolithography, wet etching, and polishing, shows comparable performance to the capillary-based nano-DESI MSI in terms of stability and sensitivity; a spatial resolution of better than 25 μm was obtained in these first proof-of-principle experiments. The iMFP is easy to operate and align in front of a mass spectrometer, which will facilitate broader use of liquid-extraction-based MSI in biological research, drug discovery, and clinical studies.  相似文献   
105.
A library of rare-earth metal derivatives supported by an aminophenoxy ligand was prepared and their catalytic performance in lactide polymerization was investigated. It was found that the synthetic strategy had a profound effect on the formation of aminophenoxy rare-earth metal complexes. Amine elimination between Ln[N(SiMe3)2]3(μ-Cl)Li(THF)3 (Ln = Yb, Y) and 1 equiv. of the aminophenol [HONH] ([HONH] = ο-OCH3-C6H4NHCH2(3,5-tBu2-C6H2-2-OH)) in toluene gave the unexpected heterobimetallic bis(aminophenoxy) rare-earth metal complexes [ON]2LnLi(THF)2 (Ln = Yb ( 1 ), Y ( 2 )). When the reactions were carried out in THF and TMEDA, amine elimination produced the aminophenoxy rare-earth metal amide complexes {[ON]LnN(SiMe3)2}2 (Ln = Yb ( 5 ), Y ( 6 )) in ca 85% isolated yields. Complexes 5 and 6 could also be obtained from salt metathesis reaction of {[ON]LnCl(THF)}2 (Ln = Yb ( 3 ), Y ( 4 )) with NaN(SiMe3)2 in a 1:2 molar ratio. In addition, treatment of complexes 3 and 4 with NaOAr (Ar = &bond;C6H4-4-tBu) and (SiMe3)2NC(NPri)2Na in 1:4 and 1:2 molar ratios provided the corresponding aminophenoxy rare-earth metal derivatives {[ON](μ-OAr)Ln(μ-OAr)Na(THF)2}2 (Ln = Yb ( 7 ), Y ( 8 )) and {[ON]Ln[(iPrN)2CN(SiMe3)2]}2 (Ln = Yb ( 9 ), Y ( 10 )), respectively. These complexes were fully characterized, and their molecular structures were determined using single-crystal X-ray diffraction. Polymerization experiments showed that complexes 1 , 2 , 5 , 6 , 9 and 10 were highly active for the ring-opening polymerization of l -lactide in toluene, and complex 1 promoted l -lactide polymerization in a controlled fashion. The polymerization of rac-lactide initiated by the neutral aminophenoxy rare-earth metal complexes 5 , 6 , 9 and 10 in THF afforded heterotactic polymers.  相似文献   
106.
A series of Ce-Fe-Ox catalysts prepared by the different calcination temperatures (marked as CF-X, where X represented calcination temperature) were used to the selectivity catalytic reduction of NOx by NH3. The results explained the relationship between calcination temperature and the sulfate species over Ce-Fe-Ox, and then investigated the surface acidity and catalytic performance. The large amounts of sulfate species were formed over CF-450 and CF-550 while it was decomposed with further the increasing of calcination temperature, which resulted in the loss of surface acidity, causing a decrease in the catalytic activity over Ce-Fe-Ox. Thereby, the CF-450 catalyst showed the best catalytic activity and over 90% NOx conversion was obtained at 244–450 °C. Besides, the favored pore structure, more Fe3+ active species, higher Ce3+ concentration and the abundance of chemical adsorbed oxygen species, as well as the surface acid sites, would together contribute to the excellent catalytic activity of CF-450 catalyst.  相似文献   
107.
Red phosphorus is a promising photocatalyst with wide visible-light absorption up to 700 nm, but the fast charge recombination limits its photocatalytic hydrogen evolution reaction (HER) activity. Now, [001]-oriented Hittorf's phosphorus (HP) nanorods were successfully grown on polymeric carbon nitride (PCN) by a chemical vapor deposition strategy. Compared with the bare PCN and HP, the optimized PCN@HP hybrid exhibited a significantly enhanced photocatalytic activity, with HER rates reaching 33.2 and 17.5 μmol h−1 from pure water under simulated solar light and visible light irradiation, respectively. It was theoretically and experimentally indicated that the strong electronic coupling between PCN and [001]-oriented HP nanorods gave rise to the enhanced visible light absorption and the greatly accelerated photoinduced electron–hole separation and transfer, which benefited the photocatalytic HER performance.  相似文献   
108.
An umpolung 1,4-addition of aryl iodides to enals promoted by cooperative (terpy)Pd/NHC catalysis was developed that generates various bioactive β,β-diaryl propanoate derivatives. This system is not only the first reported palladium-catalyzed arylation of NHC-bound homoenolates but also expands the scope of NHC-induced umpolung transformations. A diverse array of functional groups such as esters, nitriles, alcohols, and heterocycles are tolerated under the mild conditions. This method also circumvents the use of moisture-sensitive organometallic reagents.  相似文献   
109.
The condensation reaction between 6-hydroxy-2-cyanobenzothiazole (CBT) and cysteine has been shown for various applications such as site-specific protein labelling and in vivo cancer imaging. This report further expands the substrate scope of this reaction by varying the substituents on aromatic nitriles and amino thiols and testing their reactivity and ability to form nanoparticles for cell imaging. The structure–activity relationship study leads to the identification of the minimum structural requirement for the macrocyclization and assembly process in forming nanoparticles. One of the scaffolds made of 2-pyrimidinecarbonitrile and cysteine joined by a benzyl linker was applied to design fluorescent probes for imaging caspase-3/7 and β-galactosidase activity in live cells. These results demonstrate the generality of this system for imaging hydrolytic enzymes.  相似文献   
110.
This paper investigates the seismic and collapse performance of shape memory alloy (SMA) braced steel frame structures considering the effects of various brace design parameters and ultimate state of SMAs. An SMA braced steel frame building is designed to have comparable strength and stiffness with a steel-moment resisting frame selected as case study building. Then, the stiffness and ultimate deformation capacity of the SMA braces in the initially designed reference SMA braced frame are systematically varied. First, the static pushover analysis and incremental dynamic analysis (IDA) are employed to illustrate the significance of SMA brace failure consideration in seismic performance assessment of steel frames with SMA elements. Then, the influence of SMA brace initial stiffness and ultimate deformation capacity on the seismic and collapse performance of SMA braced frames are studied through pushover analyses, nonlinear response history analyses, and IDA. The results show that the SMA brace initial stiffness does not affect the interstory drift and floor absolute acceleration response at design and maximum considered earthquake (MCE) level seismic hazard or collapse capacity of the frame. However, it has considerable influence on post-event functionality of the frame. It is also found that the SMA brace ultimate deformation capacity should be at least 80% of maximum inter-story drift demand at MCE level for satisfactory seismic performance, while larger values provide higher collapse capacity for the SMA braced frame.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号